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Two-Port Equivalent Circuits of Two-Wire
Parabolic Tapered Coupled

Transmission Lines

AKIRA ENDO, KUNIKATSU KOBAYASHI, MEMBER, IEEE, YOSHIAK1 NEMOTO, MEMBER, IEEE, AND
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,4bstracf —Two-port equivalent circuits of two-wire parabolic tapered

coupled transmission lines (PTf3L) with open or short terminal conditions

on the remaining two ports are presented. Fhst, ~o-port equivalent circuits

of ~CfZ, whose eharactenstic admittances increase along the lines, are

shown. Second, two-port equivalent circuits of PT~, whose characteri-
stic impedances increase along the lines, the dual of ~e previous circuits,

are shown. These two-port circuits of ET(3L are expressed in terms of
two equivalent representations, one having mixed, lumped and uniform
distributed circuits, and the other consisting of uncoupled nonunifonrr
dktribnted circuits.

I. INTRODUCTION

c OUPLED TRANSMISSION lines are extremely im-

portant in microwave network theory and have been

described by many authors [1]–[5]. “They are used exten-

sively in all types of microwave components: filters, cou-

plers, matching sections, and equalizers, Nonuniform

coupled transmission lines may show good transmission

responses and may also be important as microwave compo-

nents. The analysis of particular nonuniform coupled

transmission lines (for instance, exponential or parabolic

tapered coupled transmission lines) has been reported

[6]-[10]. However, it is very difficult to find exact network

functions for general nonuniform coupled transmission

lines. One of the most commonly used methods of analyz-

ing coupled transmission lines has been to write the general

n X n immitance matrix, impose appropriate terminal con-

ditions, and reduce the n x n matrix to its final form,

usually a 2 x 2 matrix. Another method has been to repre-

sent equivalent circuits by graph-transformation.

In this paper, by using both of these methods, we obtain

two-port equivalent circuits of two-wire parabolic tapered

coupled transmission lines (PTCTL). First, two-port equiv-

alent circuits of PTCTL, whose self and mutual character-

istic admittances increase along the lines, are shown, These

equivalent circuits are expressed as the mixed lumped and

distributed circuits consisting of cascade connections of

lumped inductors, short-circuited stubs, uncoupled uni-

form transmission lines, and ideal transformers. These

equivalent circuits may also be expressed by the uncoupled
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nonuniform distributed circuits consisting of parabolic

tapered open- and short-circuited stubs and uncoupled

parabolic tapered transmission line. Then, two-port equiva-

lent circuits of PTCTL, whose characteristic impedances

increase along the lines, the dual of the previous circuit, are

also shown. These equivalent circuits can also be expressed

as the mixed lumped and distributed circuits, and the

uncoupled nonuniform distributed circuits.

II. EQUIVALENT REPRESENTATION OF TWO-WIRE

PARABOLIC TAPERED COUPLED TRANSMISSION LINES

Parabolic tapered coupled transmission lines are nonuni-

form coupled transmission lines whose self and mutual

characteristic immitance distributions are given as the

parabolic form (ax + b) * 2, where x is the distance along

the line, and a and b are constants. The lossless two-wire

PTCTL, whose characteristic admittance distributions are

both given by (ax+ b)2, is shown in Fig. l(a), where the

line length is 1. The equivalent circuit of this PTCTL can be

expressed as cascade connections of lumped inductors,

uniform coupled transmission lines, and ideal transformers

as shown in Fig. l(b) [7]. We call this circuit an L-type

PTCTL. ~The self and mutual characteristic admittance

distributions ~~ (x) of the L-type PTCTL are given by

~J(X)=~,j”~(X)2 (i, j=l,2) (1)

(2)

m= m(x)\X=f (3)

where

Y,,

YIJ

~,

yj

L,J
m

self characteristic admittance of i th transmission

line at x=O (i=l,2),

mutual characteristic admittance between i th and

jth transmission lines at x = O (i, j = 1, 2),

self characteristic impedance of i th transmission

line at x= O (i=l,2),

mutual characteristic impedance between i th and

jth transmission lines at x = O (i, j = 1, 2),

inductance of lumped inductor (i, j =1,2),
turns ratio of ideal transformer.
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Fig. 1. Two-wire L-type parabolic tapered coupled transmission lines

and its equivalent circuit.

Here, the element values of the circuit in Fig. l(b) must

satisfy the following condition:

[1; [w]=(ln-1)[1] (4)

where [1] is the 2 X 2 identity matrix, and

[11z=

[Y]=

1
++—

1

11 LIZ – LIZ

1—
L

+++
12 12 22

(5)

Y1l – Y12

– Y12 Y22 1 (6)

[w]=[Y]-’= I ,Y22 YD]=[!: ~:].

yll y22 — y:2 Y12

(7)

Accordingly, m(x) of (2) is obtained as follows:

nz(x)=l+(nz -l);. (8)

The two-wire unifdrm coupled transmission lines can be

represented by short-circuited stubs and uncoupled trans-

mission lines [2]. Therefore, the equivalent circuit of the

L-type PTCTL in Fig. l(a) can also be expressed as the

mixed lumped and distributed circuits shown in Fig. 2,

where the voltages and the currents are related as follows:

where

All=rn-(nz-l): (lo)

yJ
B,, = ;P (~, j=L2) (11)

c,, =(–l)i+~ .Yt, (mp+(m-l)z+ -(m-l)z$}

(i, j=l,2) (12)

Dll=+(l+(m-l):) (13)

s = jpl (14)

p = jtan P1 (Richards variable) (15)

D = the phase constant.

Fig. 2. The equivalent circuit of Ltype PTCTL shown in Fig. l(a).

(a)

fiE!3
(m-l)(Yl,-Y,z) y,,

@ ~,

(m-1)~2 -Y,?

@

(m-l )( Y22-Yj2)
Y22

(b)

///////////

(c)

Afi2
(m-l)YIZ

~l,-ylp Qy,,-ti,,

II 11///////////
(m-l)(y,,-y12) (m-l)(y22-y12)

(d)

Fig. 3. Equivalent circuit derivation for Example 1 in the text.

III. TWO-PORT EQUIVALENT CIRCUITS OF PTCTL

WITH THE MIXED LUMPED AND DISTRIBUTED

CIRCUITS

Two-port equivalent circuits of PTCTL can be derived

by two methods. One is the graph-transformation method.

The other is the matrix-reduction method, where a 4x 4

chain matrix is reduced to a 2 x 2 matrix by imposing

appropriate terminal conditions.

A. Graph-Transformation Method

To show this method of analysis, two examples are

presented next. Example 1 is the network of Fig. 3(a)

which has terminals 3 and 4 short-circuited to ground. By

using the equivalent representation of Fig. 2 and consider-

ing terminal conditions, we obtain the equivalent circuit of

Fig. 3(b). The – y12 admittances are in parallel with yll

and y22, so the graph of Fig. 3(b) reduces to that of Fig.

3(c). Since the unit elements ( yll – y12) and ( y2z – y12) are

short-circuited at one end, they act as short-circuited stubs.

The final equivalent circuit of Fig. 3(d) is thus arrived at.

Example 2 is the network of Fig. 4(a), which has termin-

als 2 and 3 short-circuited to ground. The graph-equiva-

lent circuit is given in Fig. 4(b). By using the same tech-

niques as in the previous example, the equivalent circuit

given in Fig. 4(c) and the final circuit in Fig. 4(d) are easily

obtained.
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(a)

Y(x). m(x)2y
/////

(a)

(b)

/////////////////////

+E5ak!r
(c)

(m-l)x, -yuo

(d)

‘m-’)’zaili’
(b)

3iDza’-m(m-1)y
(c)

Fig. 5. L-type parabolic tapered transmission line and its equivalent
circuit.

Z(x).m(x)zw
/////

(a)

Fig. 4. Equivalent circuit derivation for Exaznple 2 in the text.

“=

B. Matrix-Reduction Method (b)

We apply this method to the network of Fig. 4(a). The

terminal conditions in this case are given by
=’w

V2=0

}V3=0 “
(16) (c)

Fig. 6. C-type parabolic tapered transmission line and its equivalent

By substituting (16) in (9), we get circuit.

[21=’F’EI (17) In the same manner, two-port equivalent circuits of

C-type PTCTL, whose self and mutual characteristic im-

1

[

– A1lB1l %B22 – B:2

‘F]=i7 1 pedance distributions Zij(x) (i, j = 1, 2) increase along the

“ ~ B12C1Z– &~ll – D11B22 “ lines, can also be obtained [7]. These equivalent circuits are

expressed as the mixed lumped and distributed circuits

(18) consisting of cascade connections of lumped capacitors,

There is no formal method for decomposing the chain
open-circuited stubs, uncoupled uniform transmission lines,

matrix into realizable submatrices. However, by decompos-
and ideal transformers.

ing (18) appropriately, we finally obtain

[ 11Tyl+ly+ ~1[~1= ~++ (rn-QYll;

[-;,2P -$p][(Y12+lY22); :]

“[

1
1[ !

OmO
m–1 1 1.

WY22; 10;

(19)——

Here, the first and fifth matrices represent parallel lumped

inductors, the second and fourth matrices represent paral-

lel short-circuited stubs of length 1, the third matrix repre-

sents a transmission line of length 1, and the sixth matrix

represents an ideal transformer. Consequently, the equiva-

lent circuit of Fig. 4(a) can be expressed as the mixed

lumped and distributed circuit shown in Fig. 4(d).

IV. TWO-PORT EQUIVALENT CIRCUITS OF PTCTL

WITH I_JNCOUPLED NONUNIFORM DISTRIBUTED

CIRCUITS

The equivalent circuit of L-type parabolic tapered trans-

mission line (PTTL), shown in Fig. 5(a), may be expressed

as cascade connections of lumped inductors, a uniform

transmission line, and an ideal transformer shown in Fig.

5(b) and (c) [11]. Similarly, the equivalent circuit of C-type

PTTL, shown in Fig. 6(a), may be expressed as cascade

connections of lumped capacitors, a uniform transmission

line, and an ideal transformer shown in Fig. 6(b) and (c)

[11]. So, two-port equivalent circuits of PTCTL may be

represented with uncoupled parabolic tapered transmission

lines only.

The L-type parabolic tapered open- or short-circuited

stubs and their equivalent circuits are shown in Table I,

and C-type parabolic tapered stubs and their equivalent

circuits are shown in Table 11, respectively. Representa-
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TABLE I
L-TYPE PARABOLIC TAPERED STUBS AND THEIR EQUIVALENT

TABLE IV
TWO-PORT EQUIVALENT CIRCUITSOFL-TYPE PTCTL

CIRCUITS

E.uxv.lent Circuits
Oruinal

C.rc., t
E1oI,”L ValuesT—

1

0,),1 ..1 ,1.. ”1,

V(x)=m(x)2Y

3
(m-l)y

e

Y _____A
Y5

“,@ “2 @ y,

x Y3

----- -. —-- ---

v,(x) ‘fJ(x)

//.////,///

__:gzliw

i~-G -----

/,//,

‘mmY

///////
2

-m(m-l)y

9

~2y

3

a -m(m-l)y

/////// %zzEiI’@------------------
a~@

“&@’@--.------------—-.
a * @,@

/////

.4

—

Y1=(.-ll( Y,1+Y22-2Y,21

Y2=Y1 ,W22-2Y,2

Y3=-+ (y, ,W22-2Y 12)

Y,(x) .m(x)2(Y, ,.Y22–2Y, ,)
TABLE II

C-TYPE PARABOLICTAPEREDSTUBSAND THEIR EQUIVALENT

CIRCUITS
Y3

3 (
Y,

/////////////////////

Y,=[.-ll(Y 11+Y22-2Y12) , Yk=Y,2

f2=Y22-Y,~
f3=Y11-Y12, ~5=.IQ

D, y,,

Y,(x)=m(x)*[Y22-Y12)

“JX).. (X)*( Y1, -YIJ

#).dx)2Y,2

0,,,1 ..1 ,1,,.,,

m)=m(x)~w

3 “t5zi %3E%EQ—
(m-l)W
+f~

r
////////////

2

—

3

~=(m-l)y,l . y~cY2~+Y12

~=Y, ,+Y12

3’-YI2
, ~s=-% 3’22

,( X)=. (X)2( Y,1+Y,21

2( X)=-L”(X12Y12

3(x)= dx)2(Y22+Y12)

,=(.-l) (Y,, +Y22-2Y,2) 9 YL=Y,2

~=Y11-Y,2

~=Y22-Y,2
. ~s=- % Y22

,( X)=L!(X)2(Y1, -Y12)

@m(x)2(Y22-Y,2)

,[X)=. (X)2 Y,,

)
Y3

Y,

/,///,,, ///,/,,,, ,,/,
6

—

7

m2W m(m~W

///////

Yz

)
Y,

/////////////////. ///
----- -- —.- ----- —--

4

)
~

.m:l 6
‘f, h Y, Y51Q

,’, /////////,,,,,/ ,,8

%i5E@’@
@

M

s ----- ----— ———.- ---

0.
Y

w- Y1 Y,
////////,/.//,,//

----- -— --- ----- —--1(

o~c3

“(’-
7,, /,/

—
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TABLE IV (Continued)

,2“a _:_E513i2s’= ---------------
o~o

7777+77’’”

TABLE V

T—

1

—

2

3

—

4

—

5

—

~(Y,,-YJ
Y,(x)=.(x)— ,Y=4L

YIl 3 Y,,

Y2. (.-1) ~ , ~h=.gk
m Y,,

2
~ (Y, ,-Y12)

Y,(x) =.(.) —
Y)l

~ ~x)=m(x)z~
2 Yll

~,=(m., )k , ~3=.IWL
Y*2 . Y22

2
~=%

2 Y’>p
, rpx)~+

Y,(X)=.(X)’*

;
~ ~x)=m(x)2>

2
–.-. ‘=

Yl=(m- l)& , Y3=-.Qk
X22 m Y22

~ (Y22-Y 12)2
Y =Q , Yh(x)=”l (x) —
2 Y22 Y22

Y,(x) =m[x)*&

~z
2 (J’22-Y,2

Y2(x)m(xl —
Y22

Y1(XI+*)2Y11

~ ~,)=m(x)z~
2 y,,

Y,(x)=m(x12*

Y2(X)=.(X)2Y22

TWO-PORT EQUIVALENT CIRCUITS OF C-TYPE PTCTL

Ew?..lent circuits

Od:<jd..
~4..rQ

/////,////,/,//----- _____ ----- ___

.Jk:~Jkxb
,,/--;(x)

d-kdlk+rc
,///////,,,////,/,,/,
‘3i+5F--
““3”----------_____---@*@
““*”------------------

@~c3

/////

_:_”=@’@------------
0 ~ (3.0

/////

Element values

Zl=(m-l)(wl, -w,,) , Z2=W,1-W,2

‘3’(””’)W12 , Zb=wlz

Z5. (.-1 )( W22-W ,2) , Z6=W72-W12

Z1(X)=. (X)%l,-W 121

7,2[X)=. (X)2W12

Z3(X)=.( X)2( W2,-W ,2)

2,. [.-1 )!41 , Zh.w -w
22 12

Z2=W,1-W12
, 25.-* W22

m

Z3’W12

z,(xl.m( xl~[w, ,-w12)

%[’)=”(’fw,z

Z3(X)=. (.12( W22-W ,2)

Zl=[m-l) w,,
, Zz=wl 1

23”-+ Wll

2,( :)=m[x)zw,l

zl=(”-’)~
,Z=x

2 ’22

~3=_K! x

m W22

z, b)=r”(x)~+
.,,

.1=(. -7) ~V
VI 1+W22”2W12

~=~
2 WI ,.W22-2W,2

~3=-u~

m w, ~+W22-2W1 z

zl(x)a(dz~

WI 1‘W22-2W, 2

—

6

—

7

—

8

—

9

—

10

—

11

—

12

—
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TABLE V (Continued)

~“ ‘x-mao
----- ----- ----- ---

-L-L I o~o
z,(x)— Z,(K)I )///-//,;;

1

I

~ 8xELL2E@D

@ ------------------
/, /// o~o

“(’w
I

I

w
:,(X)+X)2J-AW , 23=!41,

w;,

$=(. -llwl, . Zk=-qwll

(,(X)=.(X)2LAW
~z

12 ~

12(, )=. [.)$41,

2,(.)+.)2 WI1~ Aw

@ll-’J12)

Z2=(.-1)W,1

Zb=-ti w,, , ‘3=W11
m

VII ~w
z,(x) =m(x)*—

[W,l-W,2)2

z2(x)=m(x)2 w,,

Z,(X)-(X)*
W22~ A“

(W22-W ,2)

z2=(m.1 )“22 , Z3=!422

~k=-.e “22
m

2,(X)=.(X)2
W22~ All

(W22-W,2)

Z2(X)=.(X)2W22

Zl=(.-l)wl, , ~3=-zi N
m 11

w

%?=W?1
Zb(xl=m(dulbw

~2

12

Zl[x).m(x)%, t

w
22(X)=.(X)*4 Aw

w:,

ZI=(m-t) w,, .-1

, Z3=-Y Mll
&w.”,,

~2=”1 1 ,
24(.)=.(.)2 —

(W1,-WJ

Zl[x)=m(x)%l,

Wll ~w
zJx)an(x12—

(!4,,-W,2)2

2,(X)=.(X)2*

Z2(X)=. [X)%22

Zl(x)=. (x)%,l

2/(.)=.(.)2+
11

tions of series parabolic tapered stubs and parallel para-

bolic tapered stubs are shown in Table 111, By using

parabolic tapered stubs and PTTL, two-port equivalent

circuits of PTCTL may also be expressed by the uncoupled

nonuniform distributed circuits.

V. EXAMPLES OF TWO-PORT EQUIVALENT CIRCUITS

OF PTCTL

In Table IV, two-port equivalent circuits of the L-type

PTCTL, one having mixed lumped and uniform distributed

circuits and the other consisting of uncoupled parabolic

tapered transmission lines, are introduced. Similarly, two-

port equivalent circuits of the C-type PTCTL are shown in

Table V.

VI. CONCLUSION

Fifteen equivalent circuits of _L-type PTCTL and twelve

equivalent circuits of C-type PTCTL have been d,erived

using the graph-transformation method and the matrix-

reduction method. Two-port equivalent circuits of L-type

PTCTL are expressed as the mixed lumped and distributed
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circuits consisting of cascade connections of lumped induc-

tors, short-circuited stubs, uncoupled uniform transmission

lines, and ideal transformers, and may also be expressed by

the uncoupled nonuniform distributed circuits consisting

of parabolic tapered open- and short-circuited stubs and

uncoupled PTTL. Similarly, two-port circuits of C-type

PTCTL, the dual of the previous circuits, can also be

expressed by two equivalent representations of the mixed

lumped and distributed circuits, and the uncoupled non-

uniform distributed circuits.
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