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Abstract —Two-port equivalent circuits of two-wire parabolic tapered
coupled transmission lines (PTCTL) with open or short terminal conditions
on the remaining two ports are presented. First, two-port equivalent circuits
of PTCTL, whose characteristic admittances increase along the lines, are
shown. Second, two-port equivalent circuits of PTCTL, whose characteris-
tic impedances increase along the lines, the dual of fl}e previous circuits,
are shown. These two-port circuits of PTCTL are expressed in terms of
two equivalent representations, one having mixed lumped and uniform
distributed circuits, and the other consisting of uncoupled nonuniform
distributed circuits.

I. INTRODUCTION

OUPLED TRANSMISSION lines are extremely im-

portant in microwave network theory and have been
described by many authors [1}-[5]. They are used exten-
sively in all types of microwave components: filters, cou-
plers, matching sections, and equalizers. Nonuniform
coupled transmission lines may show good transmission
responses and may also be important as microwave compo-
nents. The analysis of particular nonuniform coupled
transmission lines (for instance, exponential or parabolic
tapered coupled transmission lines) has been reported
[6]-[10]. However, it is very difficult to find exact network
functions for general nonuniform coupled transmission
lines. One of the most commonly used methods of analyz-
ing coupled transmission lines has been to write the general
n X n immitance matrix, impose appropriate terminal con-
ditions, and reduce the n X n matrix to its final form,
usually a 2 X2 matrix. Another method has been to repre-
sent equivalent circuits by graph-transformation.

In this paper, by using both of these methods, we obtain
two-port equivalent circuits of two-wire parabolic tapered
coupled transmission lines (PTCTL). First, two-port equiv-
alent circuits of PTCTL, whose self and mutual character-
istic admittances increase along the lines, are shown. These
equivalent circuits are expressed as the mixed lumped and
distributed circuits consisting of cascade connections of
lumped inductors, short-circuited stubs, uncoupled uni-
form transmission lines, and ideal transformers. These
equivalent circuits may also be expressed by the uncoupled
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nonuniform distributed circuits consisting of parabolic
tapered open- and short-circuited stubs and uncoupled
parabolic tapered transmission line. Then, two-port equiva-
lent circuits of PTCTL, whose characteristic impedances
increase along the lines, the dual of the previous circuit, are
also shown. These equivalent circuits can also be expressed
as the mixed lumped and distributed circuits, and the
uncoupled nonuniform distributed circuits.

II. EQUIVALENT REPRESENTATION OF TwWO-WIRE
PARABOLIC TAPERED COUPLED TRANSMISSION LINES

Parabolic tapered coupled transmission lines are nonuni-
form coupled transmission lines whose self and mutual
characteristic immitance distributions are given as the
parabolic form (ax + b)* 2, where x is the distance along
the line, and a and b are constants. The lossless two-wire
PTCTL, whose characteristic admittance distributions are
both given by (ax + b)?, is shown in Fig. 1(a), where the
line length is /. The equivalent circuit of this PTCTL can be
expressed as cascade connections of lumped inductors,
uniform coupled transmission lines, and ideal transformers
as shown in Fig. 1(b) [7]. We call this circuit an L-type
PTCTL. The self and mutual characteristic admittance
distributions Y, (x) of the L-type PTCTL are given by

Y, (x)=y;m(x)  (i,j=1,2) (1)

_ Wi Wl x _ Pn ) X
m(x)—1+(L11 +L22) 1_1+(L11 +L22) ]

m=m(x)|,=, (3)
where

v, self characteristic admittance of ith transmission
line at x =0 (i =1,2),
y,, ~mutual characteristic admittance between ith and
Jjth transmission lines at x =0 (7, j =1,2),
self characteristic impedance of ith transmission
line at x =0 (i=1,2),
mutual characteristic impedance between /th and
jth transmission lines at x =0 (i, j =1,2),
L;, inductance of lumped inductor (i, j =1,2),
turns ratio of ideal transformer.
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Two-wire L-type parabolic tapered coupled transmission lines
and its equivalent circuit.

Here, the element values of the circuit in Fig. 1(b) must
satisfy the following condition:

1
[ 2]m1= -1 4)
where [I] is the 2 X2 identity matrix, and
1,11
[l] _ Ly Ly Ly, 5)
72 I I R N B
Ly, Ly, Ly
_ Ju T
[Y1=]- Y12 )’22} (6)
- 1 Yo Y2 W Wy
e FR I Il |
yuyn—yhp 12 u Wi Wn
(7)
Accordingly, m(x) of (2) is obtained as follows:
m(x)=1+(m~1)2‘l-. (8)

The two-wire uniform coupled transmission lines can be
represented by short-circuited stubs and uncoupled trans-
mission lines [2]. Therefore, the equivalent circuit of the
L-type PTCTL in Fig. 1(a) can also be expressed as the
mixed lumped and distributed circuits shown in Fig. 2,
where the voltages and the currents are related as follows:

" A4y, 0 By By || W
Vs __ 1 0 4, By, By ||V, ©9)
I 1- p? ¢ Gy Dy 0 L
I Co G 0 Dyl

where
Au=m—(m—1)%

(10)
W -
Btj=_rn_Jp (19.]=1>2) (11)

i+ 1
Cy= (=1 -y {mp + (m =1~ (m =17}

(i’ j=1,2) (12)

D11=%{1+(m—1)£> (13)
5= jBl (14)
p=jtanpl (Richards variable) (15)

B = the phase constant.
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Fig. 3. Equivalent circuit derivation for Example 1 in the text.

III. Two-PorT EQUIVALENT CIRCUITS OF PTCTL
WITH THE MIXED LUMPED AND DISTRIBUTED
CIRCUITS

Two-port equivalent circuits of PTCTL can be derived
by two methods. One is the graph-transformation method.
The other is the matrix-reduction method, where a 4 x4
chain matrix is reduced to a 2X2 matrix by imposing
appropriate terminal conditions.

A. Graph-Transformation Method

To show this method of analysis, two examples are
presented next. Example 1 is the network of Fig. 3(a)
which has terminals 3 and 4 short-circuited to ground. By
using the equivalent representation of Fig. 2 and consider-
ing terminal conditions, we obtain the equivalent circuit of
Fig. 3(b). The — y;, admittances are in parallel with y,,
and y,,, so the graph of Fig. 3(b) reduces to that of Fig.
3(c). Since the unit elements ( y;;, — y;,) and (y,, — y;,) are
short-circuited at one end, they act as short-circuited stubs.
The final equivalent circuit of Fig. 3(d) is thus arrived at.

Example 2 is the network of Fig. 4(a), which has termi-
nals 2 and 3 short-circuited to ground. The graph-equiva-
lent circuit is given in Fig. 4(b). By using the same tech-
niques as in the previous example, the equivalent circuit
given in Fig. 4(c) and the final circuit in Fig. 4(d) are easily
obtained.
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Fig. 4. Equivalent circuit derivation for Example 2 in the text.

B. Matrix - Reduction Method

We apply this method to the network of Fig. 4(a). The
terminal conditions in this case are given by

Vz=0}

Voo (16)

By substituting (16) in (9), we get
v 7
-]

[F]-

(17)

By By, — 3122
— Dy By,
(18)
There is no formal method for decomposing the chain

matrix into realizable submatrices. However, by decompos-
ing (18) appropriately, we finally obtain

1 . L[ —ApBy
1- p? Bu|BpCp—AnDy

B 1 ) 0 1 . 0
[F]_‘/l———p—;[(m_l))ﬁlg 1} (J’11+)’12); 1
[ _}_IIZPT 1 1 0
|~ Jep 1| _(Jﬁz‘*‘hz); 1

[ 1 ol[m o
_—ﬁm_—l}’n% 1“0 'rlz} (19)

Here, the first and fifth matrices represent parallel lumped
inductors, the second and fourth matrices represent paral-
lel short-circuited stubs of length /, the third matrix repre-
sents a transmission line of length /, and the sixth matrix
represents an ideal transformer. Consequently, the equiva-
lent circuit of Fig. 4(a) can be expressed as the mixed
lumped and distributed circuit shown in Fig. 4(d).
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Fig. 5. IL-type parabolic tapered transmission line and its equivalent
circuit.
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Fig. 6. C-type parabolic tapered transmission line and its equivalent
circuit.

In the same manner, two-port equivalent circuits of
C-type PTCTL, whose self and mutual characteristic im-
pedance distributions Z; (x) (i, j=1,2) increase along the
lines, can also be obtained [7]. These equivalent circuits are
expressed as the mixed lumped and distributed circuits
consisting of cascade connections of lumped capacitors,
open-circuited stubs, uncoupled uniform transmission lines,
and ideal transformers.

IV. Two-Port EQUivALENT CIRcUITS OF PTCTL
wiITH UNCOUPLED NONUNIFORM DISTRIBUTED
CIRCUITS

The equivalent circuit of L-type parabolic tapered trans-
mission line (PTTL), shown in Fig. 5(a), may be expressed
as cascade connections of lumped inductors, a uniform
transmission line, and an ideal transformer shown in Fig.
5(b) and (c) [11]. Similarly, the equivalent circuit of C-type
PTTL, shown in Fig. 6(a), may be expressed as cascade
connections of lumped capacitors, a uniform transmission
line, and an ideal transformer shown in Fig. 6(b) and (c)
[11]. So, two-port equivalent circuits of PTCTL may be
represented with uncoupled parabolic tapered transmission
lines only.

The L-type parabolic tapered open- or short-circuited
stubs and their equivalent circuits are shown in Table I,
and C-type parabolic tapered stubs and their equivalent
circuits are shown in Table II, respectively. Representa-
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tions of series parabolic tapered stubs and paralle] para-
bolic tapered stubs are shown in Table III. By using
parabolic tapered stubs and PTTL, two-port equivalent
circuits of PTCTL may also be expressed by the uncoupled
nonuniform distributed circuits.

V. EXAMPLES OF TwWO-PORT EQUIVALENT CIRCUITS
or PTCTL

In Table IV, two-port equivalent circuits of the L-type
PTCTL, one having mixed lumped and uniform distributed
circuits and the other consisting of uncoupled parabolic
tapered transmission lines, are introduced. Similarly, two-
port equivalent circuits of the C-type PTCTL are shown in
Table V.

VI. CONCLUSION

Fifteen equivalent circuits of L-type PTCTL and twelve
equivalent circuits of C-type PTCTL have been derived
using the graph-transformation method and the matrix-
reduction method. Two-port equivalent circuits of L-type
PTCTL are expressed as the mixed lumped and distributed
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circuits consisting of cascade connections of lumped induc-
tors, short-circuited stubs, uncoupled uniform transmission
lines, and ideal transformers, and may also be expressed by
the uncoupled nonuniform distributed circuits consisting
of parabolic tapered open- and short-circuited stubs and
uncoupled PTTL. Similarly, two-port circuits of C-type
PTCTL, the dual of the previous circuits, can also be
expressed by two equivalent representations of the mixed
tumped and distributed circuits, and the uncoupled non-
uniform distributed circuits.
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